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Abstract— A finite beam theory of the multiple scattering
associated with backscattering enhancement was derived ina
previous study by the authors for a layer of spherical raindrops.
Although the previous theory clarified the reflectivity of multiple
scattering for a finite beam width, it can be applied only to a
distribution of spherical raindrops of uniform size. In thi s paper,
we expand the previous theory to be applied to a generic drop
size distribution with spheroidal raindrops including spherical
rain drops. In this paper, we expand the previous theory to
be applied to a generic drop size distribution with spheroidal
raindrops including spherical raindrops. Results will be used
to discuss the multiple scattering effects on the backscatter
measurements acquired by a W-band (95-GHz) nadir-pointing
radar. Our findings will have direct applications to spaceborne
cloud radar remote sensing, including NASA’s CloudSat Mission,
which is scheduled for launch in the summer of 2005. In general,
change of raindrop shape from sphere to spheroid brings about
spatial anisotropy not only in the scattering matrix but also in
the propagation wave constants. This spatial anisotropy causes
no effect on the first order scattering at nadir, while its effect
on second order scattering must be carefully treated. For nadir
operation, it has been demonstrated that the change in the spatial
anisotropy brought by the non-spherical water particles gives
negligible difference from our spherical particle approximation
for the second order copolarized reflectivity, while for thecross
polarized intensity, a small difference of less than 10 % appears.
As an illustration, for nadir operation of a 95 GHz radar,
both the sphere and spheroid approximations give the total
increment in copolarized reflectivity of 1 dB for 10 mm/hr rain
of a layer thickness of 100 m along with the Marshall-Palmer
distribution. This increment must be subtracted from measured
copolarized intensity in order to retrieve the correct amount
of precipitation. Since our primary concern is to correct the
total copolarized reflectivity, this result seems to legitimate to use
spherical particles for estimating the effect of multiple scattering
as a first approximation.

I. I NTRODUCTION

Millimeter-wavelength weather radars have been extensively
used to increase accuracy of measuring hydrometeor number
densities (e.g. raindrops, liquid-cloud particles). In this fre-
quency regime, multiple scattering effects become important
so as to be taken into account when using radar reflective
intensity in retrieval algorithms of hydrometeor density.The
occurrence of multiple scatterings was confirmed in 35 GHz

radar measurements by the presence of depolarized signals
reflected from spherical rain drops [1], [2].

From the early 1970’s to the early 1990’s, multiple scatter-
ing in randomly distributed particles was intensively studied
through the analytical method of electromagnetic wave [3],[4],
[5], [6], [7]. In the course of study, two main contributionsof
multiple scattering to reflective intensity were revealed;one
is the conventional multiple scattering called ladder term, and
the other called cross term, is contribution from interference
of two ray paths mutually satisfying the condition of time-
reversal paths. For monostatic radars, the cross term becomes
comparable to the ladder term, resulting in backscattering
enhancement.

In all the previous theoretical works, a plane wave is injected
to a layer of randomly distributed particles, and the reflected
wave is collected by a receiver at infinite range. On the other
hand, in remote sensing, a spherical wave with a finite beam
width, usually approximated as a Gaussian antenna pattern
within the antenna mainlobe, is injected, and the reflected wave
is received by an antenna at a finite range. Kobayashi et al. [8],
[9] recently derived a finite beam theory of the multiple scat-
tering associated with backscattering enhancement. The theory
clarified that for a radar footprint smaller than the mean free
path, the backscattering-enhancement reflectivity correspond-
ing to spherical waves is significantly less pronounced thanin
the case of the plane wave theory. However the above theory
can be applied only to a distribution of spherical raindropsof
uniform size. In this paper, we expand the previous theory to
be applied to a generic dropsize distribution with spheroidal
raindrops including spherical rain drops. When ice-particles
are approximated as spheroids as described in [10], the derived
theory can be applied to ice-particle clouds that have large
albedos, to calculate the effect of multiple scattering. This
application is important for CloudSat mission, and will be
reported in the future.

II. FORMALISM

In general, change of raindrop shape from sphere to
spheroid brings about spatial anisotropy not only in the scat-



tering matrix but also in the propagation wave constants. Thus
the propagation Green functions in [8], [9] must be changed
to dyadic forms. Suppose that spheroidal particles are aligned
in a preferential direction, defined by polar anglesθb andϕb.
Since the principal axes of wave propagations coincide with
two directionsΘ̂ and Φ̂ in the body frame of the spheroids,
the propagation dyadic Green function is represented in the
diagonal form

G11(r, r
′) ≈ (4π)−1 |r − r

′|−1 |β 〉 exp[ikβ |r − r
′|] 〈β |

(1)
in which the Dirac notation has been used. Namely the dummy
vector-componentβ represents one of̂Θ and Φ̂, and β is
summed up over̂Θ and Φ̂. The complex wave numberkβ

that is a function of the polar coordinateΘ is given by the
Foldy approximation [11]:

kβ(Θ) = k + 2πk−1

∫
da N(a)Fββ(r̂, r̂; a) (2)

where k is the wavenumber in air, and the unit vectorr̂
represents the direction specified by the polar coordinateΘ and
Φ. N(a) is a drop size distribution function, andFββ(r̂, r̂; a)
denotes theββ component of the forward scattering amplitude
matrix for an diameter ’a’. Note thatkβ depends only onΘ in
the body frame of spheroids due to its axial symmetry. In the
same manner, the incident waveψ(r′), and the dyadic Green
function of the received wavēG01(r, r

′) can be rewritten

ψ(r′) ≈
√

Pt G0 /4π r−1
s exp[ikrs] exp[−r

′2
⊥/4σ2

r ]

|β2 〉 exp[iKiβ2
r
′] 〈β2 | ψ0〉 (3)

Ḡ01(r, r
′) ≈

√
π G0 /k2 r−1

s exp[ikrs] exp[−r
′2
⊥/4σ2

r ]

|β1 〉 exp[iKsβ1
r
′] 〈β1 | (4)

σ2
r = r2

s θ2
d/23ln2 (5)

in which a large rangers � |r′| and a small 3-dB aperture
angleθd � 1 have been assumed.r′⊥ denotes the transverse
length of the pointr′ that is orthogonal to the layer thickness of
d as shown in Fig. 1.Pt andG0 denote the transmitting power
and the center gain of an antenna respectively.ψ0 represents
the unit vector of an initial polarization. The dummy vector-
componentsβ1 andβ2 represent taking sums over̂Θ and Φ̂.
The foot print radiusσr is defined in Eq. 5. The complex wave
numbers in the incident and received directions are defined
respectively in the forms of

Kiβ2
≈ Re(kiβ2

)k̂i − iκ”ziβ2
ẑ (6)

Ksβ1
≈ Re(ksβ1

)k̂s + iκ”zsβ1
ẑ (7)

in which the imaginary parts are defined with the incident
(θinc) and received (θs) angles as

κ”ziβ2
= −Im(kiβ2

)/cosθinc (8)

κ”zsβ1
= Im(ksβ1

)/cosθs (9)

In Eqs. 6- 9, the complex wave numbers in the incident and
received directions, denoted bykiβ2

andksβ1
respectively, can

be defined in the same manner as Eq. 2. For later use, the real
and imaginary parts of the z-components of Eqs. 6 and 7 are
rewritten along with Eqs. 6-9 to the forms

Kziα = −k′
ziα − iκ”ziα (10)

Kzsα = k′
zsα + iκ”zsα (11)

Using Eqs. 1-11 in the same manner as Kobayashi et al. [8],
[9], the received signals of the first order scattering (the first
order ladder term) can be represented for nearly backscattering
condition:

I
(1)
L = B · Re [ {1 − e−i(K∗

zsα1
−Kzsβ1

+Kziβ2
−K∗

ziα2
)d}

{i(K∗
zsα1

− Kzsβ1
+ Kziβ2

− K∗
ziα2

)}−1

∫
da N(a)

{
〈u | α1〉

〈
α1

∣∣∣F (k̂s, k̂i; a)
∣∣∣ α2

〉
〈α2 | ψ0〉

}∗

{
〈u | β1〉

〈
β1

∣∣∣F (k̂s, k̂i; a)
∣∣∣ β2

〉
〈β2 | ψ0〉

}
] (12)

with a constant

B = PtG
2
0λ

2θ2
d (29π2 ln2 r2

s)
−1 (13)

In Eq. 12, u represents one of unit vectors of the received
orthogonal polarization, e.g.h and v. Sinceu is treated as
dummy vector in Eq. 12, we must take sum overh andv.

The second order ladder term can be represented:

I
(2)
L = B

∫
da1N(a1)

∫
da2N(a2) {

∫ ∞

0

dη
η

1 + η2

∫ 2π

0

dϕRe [
{
〈u | α1〉

〈
α1

∣∣∣F (k̂s, r̂; a2)
∣∣∣ γ

〉

〈
γ

∣∣∣F (r̂, k̂i; a1)
∣∣∣ α2

〉
〈α2 | ψ0〉 }∗

{
〈u | β1〉

〈
β1

∣∣∣F (k̂s, r̂; a2)
∣∣∣ β

〉

〈
β

∣∣∣F (r̂, k̂i; a1)
∣∣∣β2

〉
〈β2 | ψ0〉 }

{i(K∗
zsα1

− Kzsβ1
+ Kziβ2

− K∗
ziα2

)}−1

∫ d

0

dζ

e−(κ”ziα2
+κ”ziβ2

)ζe−(k”β+k”γ)ζ
√

1+η2

e−ζ2η2/4σ2

r ei{(k′

β−k′

γ)
√

1+η2−k′

ziα2
+k′

ziβ2
}ζ ]

−
∫ 2π

0

dϕRe [ {same matrices}

{i(K∗
zsα1

− Kzsβ1
+ Kziβ2

− K∗
ziα2

)}−1

∫ d

0

dζ

e−i(K∗

zsα1
−Kzsβ1

+Kziβ2
−K∗

ziα2
)d e(κ”zsα1

+κ”zsβ1
)ζ

e−(k”β+k”γ )ζ
√

{ 1+η2

e−ζ2η2/4σ2

r

ei{(k′

β−k′

γ)
√

1+η2+k′

zsα1
−k′

zsβ1
}ζ ]

+

∫ 2π

0

dϕRe [ {same matrices witĥr ↔ −r̂}

{i(K∗
zsα1

− Kzsβ1
+ Kziβ2

− K∗
ziα2

)}−1

∫ d

0

dζ



e−(κ”zsα1
+κ”zsβ1

)ζe−(k”β+k”γ )ζ
√

1+η2

e−ζ2η2/4σ2

r ei{(k′

β−k′

γ)
√

1+η2−k′

zsα1
+k′

zsβ1
}ζ ]

+

∫ 2π

0

dϕRe [ {same matrices witĥr ↔ −r̂}

{i(K∗
zsα1

− Kzsβ1
+ Kziβ2

− K∗
ziα2

)}−1

∫ d

0

dζ

−i(K∗

zsα1
−Kzsβ1

+Kziβ2
−K∗

ziα2
)d e(κ”ziβ2

+κ”ziα2
)ζ

e−(k”β+k”γ )ζ
√

1+η2

e−ζ2η2/4σ2

r ei{(k′

β−k′

γ)
√

1+η2−k′

ziβ2
+k′

ziα2
}ζ ] (14)

In Eq. 14, ζ = tanθ has been used. Hereθ and ϕ are the
polar coordinates of the directional unit vectorr̂ defined in
the laboratory frame. On performing the integrals, the polar
coordinatesθ and ϕ must be converted to the corresponding
polar coordinatesΘ and Φ in the body frame of spheroids,
respectively.

The second order cross term can be represented:

I
(2)
C = B

∫
da1N(a1)

∫
da2N(a2) { 2 ·

∫ ∞

0

dη
η

1 + η2

∫ 2π

0

dϕRe [
{
〈u | α1〉

〈
α1

∣∣∣F (k̂s, −r̂; a1)
∣∣∣ γ

〉

〈
γ

∣∣∣F (−r̂, k̂i; a2)
∣∣∣ α2

〉
〈α2 | ψ0〉 }∗

{
〈u | β1〉

〈
β1

∣∣∣F (k̂s, r̂; a2)
∣∣∣ β

〉

〈
β

∣∣∣F (r̂, k̂i; a1)
∣∣∣ β2

〉
〈β2 | ψ0〉 }

{i(K∗
zsα1

− Kzsβ1
+ Kziβ2

− K∗
ziα2

)}−1

∫ d

0

dζ

e−(κ”ziβ2
+κ”zsα1

)ζe−(k”β+k”γ )ζ
√

1+η2

e−ζ2η2/4σ2

r

ei{(k′

β−k′

γ)
√

1+η2−k′

zsα1
+k′

ziβ2
−qβ2α2β1α1

}ζ ]

−
∫ 2π

0

dϕRe [ {same matrices}{i(K∗
zsα1

− Kzsβ1

+Kziβ2
− K∗

ziα2
)}−1

∫ d

0

dζ e−ζ2η2/4σ2

r

e−i(K∗

zsα1
−Kzsβ1

+Kziβ2
−K∗

ziα2
)d e(κ”zsβ1

+κ”ziα2
)ζ

ei{(k′

β−k′

γ)
√

1+η2−k′

zsβ1
+k′

ziα2
−qβ2α2β1α1

}ζ ] (15)

in which qβ2α2β1α1
denotes the deviation from the right

backscattering:

qβ2α2β1α1
= 2−1(k′

iβ2
+ k′

iα2
)sinθinccos(ϕinc − ϕ)

+ 2−1(k′
sβ1

+ k′
sα1

)sinθscos(ϕs − ϕ) (16)

When the incident angleθinc is set atπ, the backscattering
angle becomes 0. As the scattering angleθs deviates from
the right backscattering angleθs = 0, the value ofqβ2α2β1α1

increases, resulting in strong decorrelation of the cross term
(15). Note that Eqs. 14 and 15 include the effect of spatial
anisotropy caused by spheroidal particles. It is also notedthat
high symmetries of scattering amplitude matrices shown in
[8], [9] break out due to introduction of a generic dropsize
distribution instead of mono disperse dropsize distribution.

III. D ISCUSSION ANDCONCLUSION

The main purpose of this paper is to calculate the effects
of second order scatterings on the received signal from rains
with a generic drop size distribution, such as the Marshall-
Palmer distribution. Rain drop shapes can be approximated as
spheroids, and a numeric relation between the axial ratio (ver-
tical radius/ horizontal radius =a/b) and the equivolumetric
radiusa0(mm) is reported in [12] as

a/b = 1 − 0.1a0 (17)

As a first step, the principal axes of spheroids are assumed to
be aligned in the vertical direction. Since the second scattering
effect appears maximally for the infinite footprint radius [8],
[9], Eqs. 14 and 15 are calculated forσr = ∞. The other
parameters are matched to those of the CloudSat mission. The
layer thickness is taken equal to the vertical resolution of500
m, and the radar frequency is set at f = 95 GHz. Figure 2 is the
result for the Marshall-Palmer distribution with the rain drop
shapes defined by Eq. 17. In the figure, the second order ladder
terms normalized by the first order scattering (Eq. 12) are
denoted asLco

2 andLcx
2 for the copolarized and cross polarized

signals respectively, while the corresponding second order
cross terms are denoted asCco

2 andCcx
2 . Figures 2 (a) and (b)

show the copolarized and cross polarized returns respectively.
It is noticed that there is no first order contribution to the cross
polarization for nadir operation. The formalism of this paper
can be applied to only CW radars in rigorous sense. However,
for over 5 mm/hr rains along with a large resolution length of
500 m, we can show that this formalism can be used as a first
estimator for second order scattering. Figure 2 (a) indicates
that the total increment in copolarized return (1 + Lco

2 + Cco
2 )

reaches as high as 2 dB for 10 mm/hr rain. This increment
must be subtracted from measured copolarized intensity in
order to retrieve the correct amount of precipitation.

The second purpose of this paper is to evaluate the dif-
ferences in reflectivities up to the second order scattering
between spherical and spheroidal shapes. When the principal
axes of spheroids are aligned in the vertical direction, there is
no spatial anisotropy in the vertical direction so that there
is no difference in value of the first order scattering (Eq.
12) between the two rain shapes. However, for the second
scattering process, the propagation from one particle to an-
other, especially in the transverse direction, is affectedby
the anisotropy brought by spheroidal shapes. This effect is
considered to be larger in the cross polarization (Lcx

2 + Ccx
2 )

than in the copolarization (Lco
2 +Cco

2 ), because the former has
more contribution of transverse propagation. In fact it is found
that the values ofLcx

2 + Ccx
2 and Lco

2 + Cco
2 for the spheres

have higher values than those for the spheroids by (< 0.4 dB)
and (< 0.1 dB) respectively.

To apply the theory in this paper to pulsed radars, it is
necessary to combine it to the time-dependent theory [1],
which does not include the effects of the cross term (Eq. 15)
nor finite footprint size. The small differences in values of
the second order scattering between spheres and spheroids



Fig. 1. Schematic diagram of distribution of spheroidal hydrometeors, and
the incidentbki and the scattered̂ks wave directions. An arbitrary point in
the medium of thickness of d is denoted byr

′ The point O is the origin of
coordinates in the laboratory frame. The principal axes of spheroids are tilted
to the laboratory frame.

indicates that the combined algorithm may be achieved by
approximating raindrops as spheres.
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Fig. 2. Increments in total reflectivities as functions of rain rate (mm/hr) for
Marshall-Palmer distribution with drop shapes given by Eq.17. The principal
axes of spheroids are in the vertical direction. Nadir operation with radiation
frequency 95 GHz is assumed. A layer thickness d, and the footprint radius
are set at 500 m and infinity respectively. (a): Copolarized return signal. (b):
Cross polarized return signal. Note that there is no first order contribution to
the cross polarization for nadir operation.


